Uniform vs Pointwise Convergence

Make the $\varepsilon$–$N$ story visual. Compare $f_n$ to its pointwise limit $f$, watch $\sup_x |f_n-f|$, and test uniformity.
  • $$f_n(x)=x^n,\ x\in[0,1]$$ pointwise, not uniform
  • $$f_n(x)=\\sin(nx)/n,\ x\in[0,2\\pi]$$ uniform
  • $$f_n(x)=\\dfrac{n}{1+n^2x^2},\ x\in\\mathbb R$$ fails at x=0
Current $\sup_x |f_n-f|$
Grid resolution
ε-test at current n
Uniform? (theory)
$$\textbf{Uniform vs Pointwise.}\\ (f_n) \to f \text{ pointwise if }\forall x\,\forall \varepsilon>0\,\exists N\,\forall n>N:\ |f_n(x)-f(x)|<\varepsilon.\\ (f_n) \to f \text{ uniformly if }\forall \varepsilon>0\,\exists N\,\forall n>N\,\forall x:\ |f_n(x)-f(x)|<\varepsilon. $$ $$\text{We visualize } \varepsilon \text{-bands and compute } \sup_x |f_n-f|\text{ over the chosen domain.}$$
Curves: $f_n$ (blue) vs limit $f$ (pink) with $\varepsilon$-band (shaded). Drag $\varepsilon$ to see band width change. Heatmap shows minimal $N(\varepsilon,x)$.